Post Graduate Diploma in Data Science with Machine Learning & AI
logo
  • Home
  • Course
  • Post Graduate Diploma in Data Science with Machine Learning & AI

Post Graduate Diploma in Data Science with Machine Learning & AI

This intensive program equips learners with the essential knowledge and practical skills required to become industry-ready data professionals. The course covers statistics, Python, SQL, analytics tools, data mining, machine learning, deep learning, and AI integration. Through hands-on projects, learners will gain expertise in analyzing data, building predictive models, and applying advanced AI techniques to solve real-world problems. Designed with a balance of theory and practice, this diploma prepares students for careers in data science, business intelligence, and AI-driven industries.

Class - 120
Duration - 12 Months
Projects - 10
Joined - 900
Post Graduate Diploma in Data Science with Machine Learning & AI

60000100000

60000100000

Details About the course

The Post Graduate Diploma in Data Science with Machine Learning & AI is a comprehensive, career-focused program designed to build highly skilled professionals in the growing field of data-driven technologies. This program provides learners with a structured pathway to gain expertise in statistical foundations, programming, database management, data analysis tools, and advanced AI applications.

The curriculum is divided into three trimesters:


Trimester 01 introduces the fundamentals of data science, beginning with Statistics, where students learn descriptive and inferential techniques, probability distributions, hypothesis testing, sampling, and experiment design. Learners then move on to Python Programming, developing proficiency in data structures, libraries such as NumPy, Pandas, and Scikit-Learn, and techniques for preprocessing and preparing datasets for machine learning. The trimester also covers SQL, enabling students to query, join, and analyze relational databases, alongside Analytics Tools such as Microsoft Excel and Power BI for data cleaning, visualization, and interactive dashboard creation.


Trimester 02 advances into Data Mining, focusing on data preprocessing, web scraping, association rule mining, classification, clustering, anomaly detection, and data warehousing. Students then explore Machine Learning, covering regression, classification, decision trees, and ensemble methods like random forests, with strong emphasis on practical implementation in Python. The trimester also includes Deep Learning, where learners gain hands-on experience with neural networks, optimization techniques, convolutional and recurrent architectures, generative models, and applications in computer vision and natural language processing.


Trimester 03 focuses on AI Integration, equipping learners with modern generative AI tools and AutoML platforms to accelerate coding, SQL query generation, model building, and deployment. Students also learn prompt engineering and practical use of AI to automate repetitive tasks. The program concludes with a Final Project, where trainees design and implement a complete end-to-end data science and AI solution, applying the knowledge and tools learned throughout the course to solve real-world business or research problems.

Alongside the coursework, learners participate in written and practical exams, assignments, and hands-on projects, ensuring strong conceptual understanding and practical application. Strict attendance, performance, and assignment policies maintain academic discipline and professional readiness.

Upon completion, graduates will:

                     1.  Build strong foundations in statistics, Python, SQL, and data visualization.

                     2. Gain expertise in machine learning and deep learning models.

                     3. Apply advanced AI tools and AutoML for real-world problem solving.

                    4. Design, analyze, and implement end-to-end data science projects.

This program prepares learners for careers in data science, artificial intelligence, machine learning engineering, business intelligence, and advanced analytics, making them industry-ready professionals capable of driving data-powered innovation.

Course Modules

Module-1 : Fundamental of Statistics
Class - 10
Quiz - 2
Assignment - 1

This course provides a solid foundation in statistics, focusing on the essential concepts and methods used in data analysis. It is designed to help learners build the skills necessary to understand, interpret, and apply statistical techniques in real-world situations, especially in data science, research, and decision-making.

1. Descriptive Statistics

This section introduces the tools used to summarize and describe data.

  • Measure of Central Tendency (Mean, Median, Mode): Learn how to identify the center point of a dataset and understand when to use each measure effectively.
  • Variability (Standard Deviation, Variance): Understand how data values are spread around the mean and why variability is critical in comparing datasets.
  • Graphical Summaries (Bar Plots, Histograms): Explore visual tools to represent data distribution and patterns for easy interpretation.
2. Inferential Statistics

This section covers methods that allow making predictions or generalizations about a population based on sample data.

  • Probability Distribution: Understand the basics of probability and key distributions (normal, binomial, Poisson) that form the foundation of statistical inference.
  • Hypothesis Testing: Learn how to test assumptions using statistical methods (t-tests, chi-square tests, etc.), interpret p-values, and draw meaningful conclusions.
  • Sampling: Discover different sampling techniques, their importance, and how they impact the accuracy of results.
  • Experiment Design: Understand how to design experiments and surveys in a structured way to reduce bias and ensure reliable results.
After completing this module, you will be able to achieve these certifications
  • Summarize datasets using numerical and graphical methods.
  • Apply measures of central tendency and variability to analyze data.
  • Understand probability distributions and their applications.
  • Conduct hypothesis testing and interpret results confidently.
  • Use appropriate sampling methods for data collection.
  • Design simple experiments and analyze outcomes effectively.
Module-2 : Python
Class - 12
Quiz - 2
Assignment - 2

This course introduces learners to Python programming with a strong focus on its applications in Machine Learning (ML) and Data Science. The course covers Python basics, essential libraries, and practical techniques for preparing data before feeding it into ML models. Learners will gain both theoretical understanding and hands-on coding practice.

1. Introduction
  • Basics of Python programming: variables, data types, operators, and control structures.
  • Functions, loops, and conditionals for solving problems.
  • Introduction to Jupyter Notebook / Google Colab for data science projects.
  • Writing clean, reusable, and efficient Python code.
2. Python Libraries for Machine Learning
  • NumPy: Working with arrays, mathematical operations, linear algebra.
  • Pandas: Handling tabular data, DataFrames, data cleaning, filtering, and transformation.
  • Scikit-Learn: Overview of machine learning workflows, preprocessing tools, and basic algorithms.
  • Hands-on exercises with small datasets to practice these libraries.
3. Handling Missing Data
  • Understanding missing data and its impact on analysis.
  • Techniques for handling missing values:

     1. Deletion methods (row/column removal).

     2. Imputation methods (mean, median, mode,  forward/backward fill).

  • Practical implementation in Pandas and Scikit-Learn.
4. Encoding Categorical Variables
  • Why categorical variables need to be encoded in ML.
  • Label Encoding vs. One-Hot Encoding.
  • Using Scikit-Learn and Pandas to perform encoding.
  • Real-life dataset examples (e.g., encoding gender, country, categories).
5. Dataset Split & Feature Scaling Practice
  • Splitting datasets into training and testing sets.
  • Importance of data splitting for unbiased evaluation.
  • Feature scaling techniques:

         o Standardization (Z-score normalization).

         o Min-Max scaling.

  • Implementing scaling with Scikit-Learn (StandardScaler, MinMaxScaler).
  • Practical exercise: Prepare a dataset from raw data to model-ready features.
After completing this module, you will be able to achieve these certifications
  • Gain confidence in Python programming for ML.
  • Use NumPy, Pandas, and Scikit-Learn effectively.
  • Clean and preprocess datasets by handling missing and categorical data.
  • Prepare datasets with splitting and feature scaling for ML models.
  • Be ready to move forward to machine learning algorithms and modeling.
Module-3 : SQL
Class - 12
Quiz - 2
Assignment - 2

This course is designed to give learners a strong foundation in Structured Query Language (SQL), which is essential for working with databases, extracting insights, and supporting data-driven decision-making. The course moves from basics to advanced concepts, preparing students for both academic and professional use cases in data analysis, business intelligence, and machine learning pipelines.

1. Introduction
  • Overview of databases and the role of SQL.
  • Difference between relational and non-relational databases.
  • Introduction to tables, rows, and columns.
  • Writing basic SQL queries: SELECT, FROM, WHERE, ORDER BY.
  • Hands-on practice with sample datasets.
2. Inner, Outer, Left, Right Joins
  • Understanding the purpose of joins in relational databases.
  • Inner Join – retrieving matching records from two tables.
  • Left Join – returning all rows from the left table with matches from the right.
  • Right Join – returning all rows from the right table with matches from the left.
  • Full Outer Join – retrieving all records when there is a match in either table.
  • Practical exercises with multiple related tables.
3. Aggregate Functions
  • Introduction to aggregate queries for summarizing data.
  • Common functions: COUNT(), SUM(), AVG(), MIN(), MAX().
  • Using GROUP BY and HAVING clauses to group and filter results.
  • Real-life examples: calculating total sales, average scores, or customer counts.
4. Subqueries
  • What are subqueries and why they are used.
  • Writing subqueries in SELECT, FROM, and WHERE clauses.
  • Nested queries for filtering and advanced calculations.
  • Performance considerations when using subqueries.
  • Examples: finding employees with above-average salary, or customers with highest purchases.

5. Advanced SQL Functions (Window & Analytical Functions)

  • Introduction to Window Functions: analyzing rows relative to current row.
  • Common functions:

           o ROW_NUMBER()         

           o RANK() / DENSE_RANK()           

           o LEAD() / LAG()

  • Analytical use cases: running totals, moving averages, trend analysis.
  • Combining window functions with partitions and ordering for deep insights.
After completing this module, you will be able to achieve these certifications.
  • Understand how to query and manipulate relational databases using SQL.
  • Apply joins to combine multiple tables for meaningful insights.
  • Summarize and analyze data using aggregate functions.
  • Write and optimize subqueries for advanced data retrieval.
  • Use window and analytical functions to perform complex analysis.
  • Be prepared to apply SQL in data analytics, business intelligence, and machine learning workflows.
Module-4 : Analytics Tools
Class - 12
Quiz - 2
Assignment - 2
This course introduces learners to two of the most widely used tools in data analytics and business intelligence: Microsoft Excel and Microsoft Power BI. The focus is on developing practical, hands-on skills that enable students to clean, analyze, and visualize data effectively to support decision-making in real-world scenarios.
1. Microsoft Excel
Excel is one of the most versatile tools for data management and analysis. This module covers both basic and advanced features.
Data Entry and Cleaning
  • Importing datasets into Excel.
  • Using filters, conditional formatting, and data validation.
  • Cleaning messy datasets with text functions and logical operations.
Formulas and Functions
  • Essential formulas: SUM, IF, VLOOKUP, HLOOKUP, INDEX, MATCH.
  • Statistical functions: AVERAGE, MEDIAN, STDEV, etc.
  • Logical and nested formulas for complex problem-solving.
Data Visualization
  • Creating bar charts, line charts, pie charts, and combo charts.
  • Using pivot tables and pivot charts for summarizing large datasets.
  • Dashboard creation for interactive reporting.
Data Analysis Tools
  • What-If Analysis (Goal Seek, Scenario Manager, Data Tables).
  • Solver for optimization problems.
  • Trend analysis and forecasting.
2. Microsoft Power BI
Power BI is a powerful business intelligence tool that transforms raw data into actionable insights through interactive dashboards.
Introduction to Power BI
  • Understanding the Power BI interface and workflow.
  • Connecting to multiple data sources (Excel, SQL, APIs, etc.).
Data Transformation
  • Cleaning and shaping data with Power Query.
  • Handling missing values and transforming columns.
  • Creating relationships between multiple tables.
Data Modeling
  • Introduction to DAX (Data Analysis Expressions).
  • Creating calculated columns, measures, and KPIs.
  • Building star schemas and data models for performance optimization.
Data Visualization
  • Designing reports with charts, maps, and KPIs.
  • Using slicers and filters for interactivity.
  • Best practices for designing professional dashboards.
Publishing and Sharing
  • Publishing reports to the Power BI Service.
  • Setting up scheduled data refresh.
  • Sharing dashboards securely within an organization.
After completing this module, you will be able to achieve these certifications
  • By completing this course, learners will:
  • Build strong data analysis and reporting skills with Microsoft Excel.
  • Create pivot tables, charts, and dashboards for summarizing large datasets.
  • Use advanced Excel tools for scenario analysis and forecasting.
  • Design, build, and share interactive dashboards in Power BI.
  • Connect and transform multiple data sources into meaningful insights.
  • Be ready to apply these tools in business, research, and data science projects.
Module-5 : Data Mining
Class - 12
Quiz - 2
Assignment - 2

This course introduces learners to the principles, methods, and applications of data mining, an essential field in data science that focuses on discovering hidden patterns, extracting meaningful information, and making predictions from large datasets. The course covers data collection, preprocessing, pattern discovery, and real-world applications through hands-on practice and projects.

1. Introduction
  • Definition and importance of data mining.
  • Applications in business, healthcare, finance, e-commerce, and social media.
  • Differences between data mining, machine learning, and statistics.
  • The Knowledge Discovery in Databases (KDD) process.
2. Data Preprocessing & Cleaning
  • Handling missing, inconsistent, and noisy data.
  • Normalization, transformation, and standardization techniques.
  • Feature selection and dimensionality reduction.
  • Tools and libraries: Python (Pandas, NumPy, Scikit-Learn).

3. Web Scraping & Data Collection

  • Methods of collecting structured and unstructured data.
  • Web scraping techniques with BeautifulSoup, Scrapy, and Selenium.
  • Working with APIs for real-time data collection.
  • Ethical considerations and legal aspects of web data mining.
4. Association Rule Mining
  • Introduction to market basket analysis.
  • Concepts: Support, Confidence, and Lift.
  • Apriori and FP-Growth algorithms.
  • Real-life examples: product recommendation, fraud detection, and customer behavior analysis.
5. Classification & Clustering
  • Classification: Supervised learning techniques (Decision Trees, Naïve Bayes, K-Nearest Neighbors, Logistic Regression).
  • Clustering: Unsupervised methods (K-Means, Hierarchical Clustering, DBSCAN).
  • Evaluating model performance (accuracy, precision, recall, F1-score, silhouette score).
  • Hands-on exercises with real datasets.
6. Anomaly Detection & Outliers
  • Importance of detecting anomalies in data.
  • Statistical methods for outlier detection (Z-Score, IQR).
  • Machine learning approaches for anomaly detection.
  • Applications: fraud detection, cybersecurity, healthcare monitoring.
7. Data Warehousing & Applications / Project Work
  • Introduction to data warehousing concepts.
  • ETL (Extract, Transform, Load) process.
  • OLAP (Online Analytical Processing) for multidimensional analysis.
  • Practical project: (data collection → cleaning → mining → visualization → reporting).
  • Students present their projects demonstrating real-world applications.


After completing this module, you will be able to achieve these certifications
  • By completing this course, learners will:
  • Understand the fundamentals and applications of data mining.
  • Collect and preprocess raw data from multiple sources.
  • Apply association rule mining for discovering meaningful patterns.
  • Use classification and clustering algorithms for data modeling.
  • Detect anomalies and handle outliers effectively.
  • Gain hands-on experience through a real-world project involving data warehousing and analysis.

What you will learn

AI Integration

AI Integration

Data visualization tool

Data visualization tool

Machine Learning

Machine Learning

MS Excel

MS Excel

Portfolio Making

Portfolio Making

Power BI

Power BI

Project Build

Project Build

Project Deployment

Project Deployment

Python

Python

Course Instructor

No instructor found.

Student Feedback

❌ কোনো Student Feedback পাওয়া যায়নি।

Frequently Asked Questions

প্রশ্ন-1 : কেমন সময় দেয়া লাগবে এ প্রোগ্রামে?
এটা তো আসলে ব্যক্তিবিশেষে আলাদা – কারো কম সময় লাগবে, কারো বেশি সময় লাগবে! তবে আশা করা যায়ঃ প্রতি সপ্তাহে গড়ে ১০-১৫ ঘণ্টা করে সময় দিলে আপনি পুরো সিলেবাস শিখে ফেলতে পারবেন।
প্রশ্ন-2 : কোর্স কোন সময় করবো? নির্দিষ্ট কোনো সময়ে ক্লাস হবে কি না?
আমাদের প্রতিটা কোর্সের আপকামিং সিডিউল দেওয়া আছে। আপকামিং সিডিউল দেখে আপনি ভর্তি কনফার্ম করতে পারেন অথবা আপনার ফ্লেক্সিবিলিটি অনুযায়ী কোর্স করতে পারবেন।
প্রশ্ন-3 : এই কোর্সে প্রোগ্রামিং জানা বাধ্যতামূলক কি?
প্রোগ্রামিং জানা থাকলে বাড়তি সুবিধা হলেও, কোর্সটি এমনভাবে ডিজাইন করা হয়েছে যাতে নতুনরাও বেসিক থেকে শিখতে পারেন।
প্রশ্ন-4 : কোর্স Fee ও Installment পরিশোধের সুযোগ আছে কি?
হ্যাঁ, কোর্স ফি সম্পর্কে বিস্তারিত তথ্য ও Installment সুযোগ ওয়েবসাইটে বা অফিসে সরাসরি জানা যাবে।
প্রশ্ন-5 : কোর্সের মেয়াদ ও ক্লাসের সময়সূচি কী?
এই কোর্সটি ১ বছরের, মোট ১২০টি ক্লাস এবং ৩৬০ ঘণ্টার প্রশিক্ষণ অন্তর্ভুক্ত। ক্লাসের সময়সূচি Upcoming সিডিউলে দেওয়া আছে।
প্রশ্ন-6 : কোর্স শেষে কোন সার্টিফিকেশন পাওয়া যাবে?
এই কোর্সটি WUST (Washington University of Science and Technology, USA) পার্টনাশীপে পরিচালিত। সফলভাবে কোর্স সম্পন্ন করলে আন্তর্জাতিকভাবে স্বীকৃত PGD সার্টিফিকেট প্রদান করা হবে।
প্রশ্ন-7 : শিক্ষাগত যোগ্যতা? নন-টেকনিক্যাল ব্যাকগ্রাউন্ডের মানুষ এটি করতে পারবে?
নির্দিষ্ট কোনো ডিগ্রি রিকোয়্যারমেন্ট নেই। তবে কমপক্ষে এইচএসসি বা সমমানের যোগ্যতা থাকা উচিত। এছাড়া, STEM (Science, Technology, Engineering, Mathematics) ব্যাকগ্রাউন্ডের শিক্ষার্থীদের জন্য এ কোর্স তুলনামূলকভাবে সহজ হবে। অবশ্য নন-টেকনিক্যাল (যেমন, কমার্স কিংবা আর্টস) ব্যাকগ্রাউন্ডের মানুষরাও এ কোর্স করতে পারবে। পাশাপাশি কয়েকটি বেসিক বিষয় জানতে হবে। যেমন, Basic Algebra সম্পর্কে ভাল ধারণা থাকা। আবার কম্পিউটার চালানো এবং ইন্টারনেট ব্রাউজার ব্যবহারে কমফোর্টেবল হতে হবে। এছাড়া, গুগলে সার্চ করে কোনো টপিক ঘেঁটে দেখার মতো অভ্যাস থাকা উচিত।

Course Certificate

Get Course Completion and Assessment Certificate at the end of the course

Can add to your CV

You can share directly on your LinkedIn profile

You can share on Facebook with one click

Any more query?

Call For Any Information Regarding The Course. Our team is always ready to assist you with guidance, support, and detailed course information.

+880179-944-6655

09 AM to 09 PM

Course Features

American University Partnership Certificate

American University Partnership Certificate

Assessment, Project & Certification

Assessment, Project & Certification

CV & Portfolio Development

CV & Portfolio Development

Income and Freelancing Guidelines

Income and Freelancing Guidelines

Internship Opportunities

Internship Opportunities

Job Placement and Freelancing Support

Job Placement and Freelancing Support

Online and Offline Support

Online and Offline Support

Project & Practical-Based Training

Project & Practical-Based Training

Recorded video

Recorded video

Tools, templates and book suggestions

Tools, templates and book suggestions

Total Hours: 360 & Duration: 1 Year

Total Hours: 360 & Duration: 1 Year

Total: 120 Classes with Recorded Videos

Total: 120 Classes with Recorded Videos

image

আমাদের প্ল্যাটফর্মে রয়েছে বেশ কিছু ফ্রী কোর্স মডিউল!

image

Download the Guidelines for FREE!

কোর্সটি সম্পর্কে বিস্তারিত জানতে

ফোন করুন (0179-944-6655)

blur shape

Copyright © 2025 – PeopleNTech Institute of IT. All Rights Reserved